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The pseudo-free 128 vertex model? 

Stuart Samuel 
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA 

Received 21 March 1979, in final form 6 June 1980 

Abstract. A new two-dimensional statistical mechanics model IS solved. It is a general 
model with 32 free parameters. The solution uses integrals over anticommuting variables. 

1. Introduction 

Two fundamental papers (amuel 1978a, b) (to be referred to as I and 11) have recently 
developed a new approach in attacking Ising-like spin models and ferroelectric 
systems. This paper will use the new methods to solve a new model called the 
pseudo-free 128 vertex model. 

An enormous number of statistical mechanics problems have geometrical 
representations. This means that the partition function is a sum over geometrical 
configurations appropriately weighted by Boltzmann factors. Papers I and I1 show that 
it is sometimes possible to find a lattice fermionic-like field theory which reproduces the 
graphical configurations with the correct weights. 7 he field theory is written in path 
integral form. The path integral for fermionic systems is an anticommuting variable 
one. Anticommuting variables provide a powerful new approach to statistical 
mechanics problems. References I and I1 were devoted to developing their application 
to interesting systems. These two papers were pedagogical. They reviewed the theory 
of anticommuting variables and developed ways of expressing partition functions in 
terms of them. Graphical methods were introduced in I1 that quickly calculate partition 
functions and anticommuting variable correlation functions. A whole class of solvable 
models were resolved using the new methods as a check that they did indeed work. 

This paper is concerned with the pseudo-free 128 vertex model which has 32 free 
parameters and encompasses a wide range of systems. A close relative is the 128 + 8 
pseudo-free model which is even more general with 40 parameters. This is also solved 
in the paper. 

Papers I and I1 systematically discussed the anticommuting variable techniques. For 
this reason few details of the 128 vertex model calculations are given. The model and 
the results'are simply presented. The method of overcoming various difficulties such as 
the sign problems, how to get vertex weight factors, etc is straightforward. It is 
suggested that the reader consult references I and 11. 

Section 2 gives a brief description of the pseudo-free 128 vertex model, § 3 
calculates its partition function, and § 4 treats the 128 + 8 pseudo-free vertex model. 

t Work has been supported by the High Energy Physics Division of the United States Department of Energy 
under contract No. W-7405-ENG-48. 
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Finally the Appendix discusses the minus sign problem due to anticommuting variable 
reorderings. 

It should be mentioned that, in principle, these models can be solved using the 
Pfaffian methods but anticommuting variables are simpler. As noted in reference I, the 
integral over a quadratic action is always a Pfaffian. The anticommuting variables have 
the advantage of easily determining minus sign factors, of systematically organising the 
algebra, and of establishing a direct connection with field theory. References to Pfaffian 
methods can be found in I and 11. 

The methods of this paper should not be confused with the operator methods of 
Schultz et a1 (1964). Their basic objects are fermionic creation and destruction 
operators b,, b:, which satisfy canonical commutation relations, bib: + b;b, = &,. The 
anticommutation variables completely anticommute: 77,77: + 7 7 : ~ ~  = 0. They use a 
transfer matrix; this paper uses a Euclidean functional integral approach. 

2. The model 

Ising models in zero magnetic field are, in general, related to closed polygon partition 
functions (CPPF’S) where sides may overlap but cannot intersect. In such a CPPF, one 
sums over closed polygons weighting the sides by ‘Bloch wall’ Boltzmann factors. The 
two-dimensional Ising model thus has such a representation+. The Ising model is not 
the most general model which is easily solvable. The corners (vertices) of polygons may 
also be weighted, resultinvin the so-called free-fermion model described by the action 
of equation (I. 4.4) whose weights are given in figure (I) 11. Let W ( p ,  be the weight of 
figure (I) l l p .  Then the following constraint, known as the free-fermion constraint, is 
satisfied: W(a)  W,,, + W(b) Wee, = W,,, Wcf, + Wee, W,g,.  Thus, although the free-fermion 
model is not the most general eight-vertex model, it is the most general easily solvable 
model. 

It would be slightly more complicated than the basic Ising model to include one set 
of diagonal next-nearest neighbour interactions. Such a system is equivalent to the 
Ising model on a triangular lattice. It is again related to a CPPF. By weighting corners as 
well as sides, a free-fermion generalisation, known as the pseudo-free 32 vertex model 
(Sacco and Wu 1975), is obtained. They have solved this model and discussed some of 
its interesting submodels and critical phenomena. 

When both next-nearest neighbour interactions are included, the Ising model 
cannot be solved. The spins sit on the sites of a square lattice (figure l ( a ) )  and bonds are 
drawn between sites which interact (figure l ( b ) ) .  The four directions inclined, horizon- 
tal, diagonal, and vertical, are respectively denoted by i, h, d, and v as shown in figure 2. 
The polygons of the corresponding CPPF are drawn on the lattice of figure l ( a )  using the 
bonds of figure l ( b ) .  The number of polygons is arbitrary. Although edges may 
intersect (figwe 3(a)), they are not allowed to overlap (figure 3(b)). Weighting the 
corners of polygons results in a more general CPPF. The most general, easily solvable 
CPPF of this form is the pseudo-free 128 vertex model. It is the free-fermion generalis- 
ation of the next-nearest neighbour Ising model and it has 32 parameters which may be 
varied independently. It is thus a very general model. For example, it includes the 
pseudo-free 32 vertex model which, as Sacco and Wu (1975) noted, contains interesting 
models as subcases. Many new models are contained in the pseudo-free 128 vertex 
model. 
t See the references in I and 11. 
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la 1 i b )  

Figure 1. The square lattice. 

I 
Figure 2. The four directions. 

( a )  i b )  

Figure 3. Allowed and forbidden configurations. The sides of polygons may intersect as in 
figure ( a )  but cannot overlap as in figure ( b ) .  

As its name implies, 128 configurations can happen at a site. This is to be compared 
with the eight vertex model where there are only eight. Of course, the solvable 
pseudo-free 128 vertex model does not assign arbitrary weights to all 128 configura- 
tions; only about one quarter of these are independent. The rest are determined by 
‘free-fermion constraints’. Vertex models are related to ferroelectric systems. From 
this point of view the pseudo-free 128 vertex model can be considered as a very general 
ferroelectric model. 

As discussed in I and 11, the partition function can be written as an anticommuting 
variable integral over an action, A’”. The action consists of three pieces, Ai:?,, A&,, 
and AmOnOmer. They are given by 128 

(2.1) 

( 2 . 2 )  

128 i t  i h t  h d t  d v t  
Awa~ =I ( Z i 7 7 m p 7 7 a + I p - 1  +Zh?7oIpqa+l  P + z d ~ a @ ~ a + l  p + l  + Z v 7 7 a p V Y a p + l ) ,  

2 g+  f t  3 f A E k r  =I ( c ,?gq fkpq fp  + ~ g f q o p q a p  + ~ g f q t i q L p  + c 4  g f 7 7 a P  T a p ) ,  
a0 ( f X ? 3 ) E S  

The q ’ s  are anticommuting variables. There are four types at each site: inclined, 
horizontal, diagonal, and vertical ones. In addition, there is a daggered and undaggered 
version of each. The cy and p label sites, that is, (a, p )  are the Cartesian coordinates of a 
site. 

The terms in (2.1) have the graphical representation of figure 4. The conventions 
established in I and I1 are used: daggered variables and undaggered variables cor- 
respond to x’s and o’s, the direction of a line entering a variable determines whether it is 
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Figure 4. The wall operators. 

an inclined, horizontal, diagonal, or vertical type, and arrows denote the order of 
bilinears. The constants, zi, z h ,  z d ,  and zy, are the Bloch wall Boltzmann factors. Each 
inclined, horizontal, diagonal, or vertical unit of wall is weighted by zi, z h ,  z d ,  or zv. 

(2.4) 

The set, S,  is used so that equation (2.2) can be written concisely. The constants, cjg 
( I  = 1 , 2 , 3 , 4  and (f, g )  E S ) ,  allow corners to be weighted. Like the z’s, their values are 
at one’s disposal. There are 24 of them. The terms in (2.2) correspond to those of 
figure 5. It is useful to define 

In equation (2.2), S is the following set of ordered pairs: 

S = {(i, h), (i, d), (i, v), (h, 4, (h, v), (d, VI). 

X 

c 3 d i  

x> 
c 2 d i  

c \ O  x, X X 
2 

c “ I  C’ “ ,  

Figure 5. The 24 corner operators. 
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for (f, g) E S.  Then, 

(2.6) =E E (C+g77f t  g +L gt f t  +' g f 
a p 7 7 a p  2 C g f V a P 7 7  ap 2c g f T a p 7 7 c r p  1, 

f g  

where the sum is over distinct f and g among the set {i, h, d, v}. 
Equation (2.3) contains the monomer terms and the remaining four free 

parameters, b,, bh, bd,  and b,. 
In a functional integral these three actions draw polygons; A;:?, draws the walls, 

Acorner forms corners, and AmOnOmer fills unfilled sites. The integral is an anticommuting 
variable one over the action, A 128: 

128 128 

(2.7) 
128 128 128 

A 1 2 8  = Awa11 + A c o r n e r  + A m o n o m e r e  

The pseudo-free 128 vertex model is a fermionic-like pseudo-free field theory, 
By expanding the action, the CPPF configurations are obtained. Table 1 shows the 

weights of each vertex configuration after the Bloch wall Boltzmann factors have been 
extracted. It turns out that the overall sign of a vertex weight is determined by the 
number of line intersections as figure 6 illustrates. The total weight of any polygonal 
configuration is the product of table 1 vertex weights at each site times the Bloch wall 
Boltzmann factors, z f ( f  = i, h, d, v), for each unit of wall. Part ( a )  of table 1 has the 
configurations where six edges enter a site; ( b ) - ( d )  contain configurations with four 
lines entering; and (e) has those where two edges enter. The two remaining configura- 
tions, those with zero or eight lines entering (boxes 127 and 128), are placed at the top 
of part ( 6 ) .  

1 L 30 1 2 8  

Figure 6.  Overall minus signs. The configurations in boxes 1 , 4 ,  30, and 128 of table 1 are 
reproduced here. They have been redrawn so that the intersections can be seen. If the 
number of intersections is even, the overall sign is positive, while an odd number of 
intersections yields a negative sign. Boxes 1, 4, 30, and 128 have respectively one, three, 
zero, and six intersections; hence boxes 1 and 4 have an overall minus sign, while boxes 30 
and 128 do not. 

One must be careful of minus signs which result from reordering the anticommuting 
variables. The Appendix proves that the overall sign of a closed non self-intersecting 
polygon is plus. The overall sign for intersecting polygons is ( -  l)', where I is the 
number of intersections. For intersections which occur at a vertex the minus sign factors 
have been included in the weights of table 1. There are, however, intersections which 
do not occur at a vertex (see figure 7) .  An additional minus sign factor must be included 
for each of these types of intersections. 

The vertex weights are expressed in terms of the following coefficients: 

(2.8) 

(2.9) 

(2.10) 
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Figure 7. Extra minus sign. An extra minus sign factor results when any two sides intersect 
between lattice sites. This figure is an example in which this happens. The weight of this 
polygon is the product of Bloch wall Boltzmann factors, the product of table 1 vertex factors, 
times an extra minus one: [zizdzhzh] x [(box 105) (box 112) (box 117) (box 126)] x [ - 11. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

1 r 
E : f ig j  zz cLfFg, + b j c t f ; ,  + bgC, f ; j  + cef;g,, 

1 1  2 4  
F f g  = - CfgCgf + C/,C&?f? 

F e f g  

Ffg E bfb, + Ffg, 
1 1  2 4  1 1  2 4  

- c e 6 f e ; g  + c e 6 f e ; g  - c e g c  ge;f + c e g c  ge;f, 

F e f g  E b e b f b g  + b e F f g  + b f F e g  + b g F e f  + F e f g ,  

1 1  2 4  1 1  2 4  
F i h d v =  ( -C id ;hCdi ;v  + Cid;hCdi;v -Civ;dCvi;h +Civ ;dCvi ;h  

1 1  2 4  1 1  2 4  
-C ih ;vChi ;d  +Cih ;vChi ;d  -Civ;hCvi;d + C w ; h C v i ; d  

1 1  2 4  1 1  2 4  
- Cih;dChi;v f Cih;dChi;v - Cid;vCdi;h - Cid ;vCdi :h )*  (2.20) 

In equations (2.8)-(2.19), each e, f ,  g, and j stands for any of the i, h, d, and v. All 
subscripts must be distinct. In (2.11) and (2.15) 1 = 1, 2, or 4. 

The coefficients satisfy the following symmetry properties: the c2%, c4’s, E2’s, and 
E4’s are antisymmetric in the two indices before the semicolon and symmetric in the 
indices after the semicolon. For example, c e f ; g  = -c,+;~,, cef ig i  = - c f e i g j  = c e f ; j g  = 
- cfekgi The F’s and F’s are completely symmetric in their indices. 

They have the following interpretation. Corners can combine to fill the anticom- 
muting variable sites. Ffg (respectively, Ferg and F i h d v )  is the weight which results in 
filling the f and g (e ,  f ,  g and all) sites by using two (three and four) corners. F i h d v  

excludes terms in which two pairs are filled separately, i.e. there is no term proportional 
to FihFd,,. Ffg (respectively, Fefg) is the way f, g (e,  f, g )  sites can be filled by using 
monomers and corners. 

Likewise, two corners can combine to form a third. c;fig (respectively, cf.f,gj) is the 
way two (three) corners combine to form a cf.f corner and in the process use up the g (g 
andj )  variables, (respectively, Ef.f;gj) is the way a c:f corner can be formed, in which 
g (g and j )  sites get filled, by using both monomers and corners. 

2 2 2 2 2 

2 
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All the definitions of functions in table 1 have been supplied except for the weight, 
~ 1 2 7 ,  of box 127. It is 

W127 F i h d v  [ ( b i b h b v b d )  + ( b i b h F d v  f b d b i F h v +  b v b i F d h  + b d b h F i v  + b v b h F i d  + b v b d F i h )  

+ ( b i F h d v f  b h F i d v +  b d F i v h  f b v F i d h )  + ( F i h F d v + F i d F h v + F i v F d h )  + (F ihdv) ] .  

(2.21) 
Table 1, along with figure 7 ,  essentially defines the model. 

3. The solution 

The partition function can be related to a miniature dimer problem using the methods 
developed in 11. If one, then, interchanges daggered and undaggered variables for 
(-s, - t )  variables, a determinant is obtained. 

Define 

i(Px, P,)  = b1- 21 exP(iPx - iPy), h ( p x ) = b h - z h  exP(iPx), 
(3.1) 

d(px, PY)=bd-ZdeXP(iPx +iPy), 

Let D be the following 8 x 8 diagonal matrix: 

v(P,) = bv-zv  exp(ip,). 

\ 

(3.3) 

(3.4) 

(3.5) 
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Let [C’]‘ denote the 4 x 4  matrix which is the transpose of C’. Define the 8 X 8 matrix, 
M(p, ,  P,) ,  by 

(3.6) 

and set 

UP,, p , )  = det M(p,, p y ) ,  (3 -7) 

where det stands for the determinant. The partition function for the pseudo-free 128 
vertex model, ZIz8, in the thermodynamic limit, is 

where T is the total number of sites. The free energy per site, f l Z 8 ,  is 

where P is the inverse temperature. 
For particular models where the Z ’ S ,  c’s ,  and b’s take on certain values, the 

determinant in (3.7) can be evaluated by using computers. One can then obtain the free 
energy by using (3.9). Other physically interesting quantities such as the energy per site 
and the specific heat can be obtained by taking derivatives with respect to p. 

4. The 128 + 8 pseudo-free vertex model 

Closely related to the pseudo-free 128 vertex model is the 128 + 8 pseudo-free vertex 
model. Append to the lattice of figure 1 the points where inclined and diagonal bonds 
cross, that is, sites with half-integer Cartesian coordinates. Figure 8(a)  shows the 
original sites (the round ones) and the new half-integer sites (the square ones). The 
terms, round and square, or, integer and half-integer, will be used to distinguish the two 
types of sites. For round sites, bonds are drawn to the four nearest-neighbour round 
sites and the nearest-neighbour square sites, but, for square sites, bonds are drawn only 

l a  I l b l  

Figure 8. ( a )  The 128 + 8 vertex model lattice. ( b )  The bonds in the 128 + 8 vertex model. 
The sites in figure l ( n )  are the round ones here. In addition, sites have been added at the 
points with half-integer Cartesian coordinates (the square sites). 



202 S Samuel 

X 9 

P x. 
Figure 9. The diagonal and inclined wall operators. 
A square site has bonds connecting to the four 
nearest-neighbour round sites. This figure shows the 
four wall operators which produce these bonds. Each 
of the four has been assigned a separate weight. 

f.; \z,l 
X 0 

to the four nearest-neighbour round sites (figure 8(b) ) .  What is the most general easily 
solvable closed polygon partition function which can be drawn on the lattice of figure 
8(b)? The answer is the 128+8 pseudo-free vertex model. This CPPF is required to 
have properties similar to the 128 vertex model: any number of polygons are allowed; 
they must be drawn on the lattice of figure 8 ( b ) ,  sides can intersect but cannot overlap; 
and the corners and sides are weighted by various factors. This CPPF is generated by 
using an anticommuting variable integral over an action, A128+8. The action again 
consists of three pieces: one that draws the walls, A:$:'8; one that forms corners, 
Acorner ; and one that fills unfilled anticommuting variable sites, Amonomer. 128+8 128+8 

d+ d d i?i i A:%+' = ( z & ~ , p ~ , + ; p + ;  + ~ G ~ : : : p + ; ~ ~ + i p + i  + ~ 1 ~ , p + i q , + ; p + :  

i+ h t  h v: v 
+z'i'qa+f p + f q L + l p  + z h ? 7 a p q a + l p  + z v q , p q a p + l ) .  

4 

(4.1) 
The z h  and zv wall operators are shown in figure 4, while the z l ,  zy, t&, 2: wall operators 
are shown in figure 9. The weights of the two different kinds of diagonal bonds have 
been chosen independently; hence the two parameters t& and zG. The same goes for 
inclined bonds. 

The corner action consists of a piece, A,'?,8,,,, identical to ( 2 . 2 ) ,  and a piece that 
forms corners at square sites: 

128+8 - 128 8 
A c o r n e r  - A c o r n e r  + A c o r n e r ,  

The round corner operators are shown in figure 5 ,  while the square corner ones are 
shown in figure 10. 

X 

X n e<: 
x o  

"\4 
w 

C' C 2  C3  C L  

l o )  ( b  1 I C  I I d )  

Figure 10. The four corner operators at a square site. 
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128 Finally, the monomer action consists of a piece, Amonamer, which fills round 
anticommuting variable sites, and a piece which fills square sites: 

128+8 128 8 
A m o n o m e r  = A m o n a m e r  + A m o n o m e r r  

(4.3) 8 - i i t  d d: 
A m o n o m e r  - C (miTe+; p + ; ~ a + ;  p+ i  + mdqa+; p t ;  + ~ , + ; p + :  1, 

4 

where is given in (2.3). 
At  round sites there are four kinds of anticommuting variables: inclined, horizontal, 

diagonal, and vertical, whereas at square sites there are only two kinds: inclined and 
diagonal. 

The result is a vertex model with two kinds of vertices: square and round. The 
weights of the round vertices are the same as for the pseudo-free 128 vertex model and 
are given in table 1. The weights of the square vertices are the same as the pseudo-free 
eight vertex model (i.e. free-fermion model) and are given in table 2. All wall weights 
have been extracted, so that the total weight is the vertex weights times the wall weights. 
If mi = md = 1 and c 1  = c 2  = c 3  = c 4  = 0, the pseudo-free 128 vertex model is obtained 
along with the minus sign factor of figure 7. 

Table 2. The weights of the square vertices in the 128 + 8  pseudo-free vertex model. 

In the Appendix, it is proven that non self-intersecting polygons have no overall 
minus signs due to reorderings of anticommuting variables. For intersecting polygons, a 
( -  1) results for each intersection. These minus sign factors have been absorbed into 
the weights of tables 1 and 2. 

The 128 + 8 pseudo-free model has 40 parameters. The anticommuting variable 
integrals over square sites can be performed since they do not couple to each other. The 
result is 
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which can be written as 

where T is the total number of (square) sites and 

It is useful to define 

(4.7) 

The k;g(l = 1, 2, 3, or 4;  f, g = i or d) terms in (4.5) have the pictorial representation 
given in figure 11. The resulting anticommuting variable action is the same as for the 
pseudo-free 128 vertex model except for the four kjg terms, and the fact that zd and zi 
are related to square site parameters via equation (4.6). 

Figure 11. The k;, operators. After square site integrals have been performed, the 128 + 8 
vertex model becomes the 128 vertex model with the addition of these four terms. 

Let D(px, p , ) ,  C',  C2 and C4 be the same matrices as in equations (3.2), (3.3), (3.4) 
and (3.5). Define 

o kl', expi-ip,) O \  i o  
0 

0 0 0 
kfii exp(-.ip,) 0 0 K'(P,) = 

0 0 
0 0 

k2i exp( - ip,) 0 
0 0 
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i o  0 kfd exp( - ip,) O \  
0 0 

0 
0 0 

(4.10) 

Let [K'(p,)]' denote the Hermitian conjugate of K1(p,), i.e. [K'(p,)]+ = [K' (  -pX)lt. Let 

Then, the free energy per unit site, f 1 2 8 + 8 ,  (that is, per round and square site pair) is 

J - r r  J r r  

where f ?28+8  is given in (4.7) 

5. Conclusion 

Two new statistical mechanics models have been solved. They are solvable via the 
Pfaff ian method, although this paper solves them using the anticommuting variables. 

The next step is to determine the physics of these models, in particular, the critical 
phenomenon. Because of the 8 x 8 determinants in equations (3.7) and (4.12), this will 
be quite tedious. The use of computers to evaluate these determinants will probably be 
necessary. One can say, however, that there will be multiple phase transitions with 
Ising-like logarithmically divergent specific heat. This is because one submodel, the 
pseudo-free 32 vertex model, is known to have such multiple phase transitions (Sacco 
and Wu 1975) 
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i o )  l b )  I c i  i d )  

Figure 12. The four elementary triangles of the lattice of figure 8(6). 
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Appendix; Overall minus signs: the non self-intersecting polygons 

This Appendix will prove that there are no overall minuses created by reorderings of 
anticommuting variables for a non self-intersecting polygon drawn on the 128 + 8 

l a  i ( 0  i 
Figure 13. Building up a polygon from elementary triangles. The polygon of figure (6)  is 
obtained from the polygon of figure ( a )  by attaching the elementary triangle of figure 1 2 ( b ) .  

l u i  i b l  I C )  Id 1 

Figure 14. The overall sign of the elementary triangles. The sign is determined by the sign 
rules of figure 8 of paper I. Begin at the x near the point A, and proceed counterclockwise 
around the triangle. The minuses due to rules (a) and (b) are shown here. In each figure 
there are an odd number of them. In addition there is a minus due to rule (c), Thus the 
overall sign of each of the four elementary triangles is plus. 

c > 
l m )  I n )  

Figure 15. The oriented corners which create a minus sign. Figures (a)  through ( I )  
(respectively, figures ( m )  and ( n ) )  show the round (square) vertex corners which create a 
minus sign because of anticommuting variable reordering. 
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lattice of figure 8(6). This also proves the result for the pseudo-free 32 vertex and 
pseudo-free 128 vertex models since any polygon drawn on their lattice can be drawn 
on the 128 + 8 lattice and the same kinds of bilinear operators are used. 

I 2 
.m. 

. . . . . . . . . . . . . . . .  .............. 
.................. '. .' - 

"0" 

Figure 16. The 480 cases. Here are the 480 cases which must be considered in the induction 
step. Each of the 12 boxes shows two of the 24 ways of appending an elementary triangle. In 
the left half of a box one side is joined, while in the right half two sides are joined. The 
joining triangle is the one formed by the solid and dotted edges. Only the neighbouring 
structure of the polygon, to which the elementary tria'ngle is being attached, is shown. When 
this triangle is attachedto a configuration on the left, a configuration on the right results (see 
figure 17(a), which is an example for box l ) ,  and when this triangle is attached to a 
configuration on the right a configuration on the left results (see figure 17(b), which is an 
example for box 1, and figure 13 which is an example for box 7). An arrow on a line indicates 
that when the orientation is in that direction, then one of the figure 15 corners is involved 
and a minus factor is present. Box 1 shows that the corner minus sign structure is unchanged 
in the joining process. Sometimes the process creates (or removes) a figure 15 corner; 
however another one is always created or removed at one of the two other vertices (see 
figure 17(c), which is a subcase of box 6). By inspecting these boxes, corner minus sign 
factors are seen to be created or removed in pairs so that the overall minus sign factor is 
unchanged. 



208 S Samuel 

The proof is similar to that for the free-fermion model, which was given in Appendix 
B of I to which the reader is referred. Extensive use will be made of the sign rules (a), 
(b), and (e) of figure 8 of paper I. The proof proceeds via induction on the area of a 
polygon. Any polygon can be built from the four elementary triangles of figure 12 (see 
figure 13). These are the polygons of minimum area. Figure 14 starts the induction 
process by proving that these have an overall plus sign. 

As required by the sign rules, the polygon is given an orientation. Choose the 
starting point to be on x. Move around the polygon and count the number of minus 
signs due to rules (a) and (b). When moving in the positive directions of figure 2, no 
minus signs occur because the x’s are after the 0’s and arrows point in the correct 
directions. When moving in the negative directions, there is a minus sign factor because 
the x’s occur before the o’s, but, in addition, there is a minus sign factor because arrows 
point in the wrong direction. Moving in straight lines causes no minuses. Next consider 
corners. There are 56 different corners; the 28 types of figures 5 and 10 are multiplied 
by two orientations. Figure 15 summarises the results. The corners of figure 15 create a 
minus sign and all others do not. The easy way to find the overall minus sign is to count 
the number of figure 15 corners in an oriented polygon. If the number is odd, then the 
extra minus due to rule (c) makes the overall sign positive. 
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Figure 17. Examples of the figure 16 induction step. Figure ( a )  is an example of going from 
a box 1 left configuration to a box 1 right configuration. Figure ( b )  shows a box 1 right 
configuration going to a box 1 left configuration. The arrows denote the location of a figure 
15 corner when traversing the polygons in a counterclockwise direction. In figures (a )  and 
( b )  no new figure 15 corners are created. Figure ( c )  is an example of a box 6 transformation 
where two extra figure 15 corners are created, when the polygon is oriented in the clockwise 
direction. 
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The elementary triangles can be attached to polygons in 24 different ways: each of 
the four elementary triangles can attach one side or two sides in three ways. All 
twenty-four are illustrated in figure 16. Each of these results in several cases depending 
on the neighbouring structure where the triangle is joined. In total, there are 480 
different cases to consider. These are all shown in figure 16. It is found that the addition 
of an elementary polygon creates zero or two minus factors or removes two minus 
factors. This implies that the overall minus sign factor due to corners is the same as for 
the elementary triangles, namely minus. The number of corner minuses is odd. When 
combined with the rule (c) minus, the claim is proved: a non self-intersecting polygon 
has no minus signs due to reorderings of anticommuting variables. 
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